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Motivation

Goal: Study cost of distortions that limit intra-firm learning opportunities

@ Micro evidence suggest these frictions are important (Atkin, et al, 2017; Brooks et al, 2018; Cai and Szeidl, 2018)

> Randomly create new opportunities for firm-to-firm interaction
= higher profit, tech adoption, management practices

@ ...but likely incomplete accounting at scale
> If that learned ability diffuses to others (Alverez, et al., 2008; Perla and Tonetti, 2014; Buera and Lucas, 2018)
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@ Micro evidence suggest these frictions are important (Atkin, et al, 2017; Brooks et al, 2018; Cai and Szeidl, 2018)

> Randomly create new opportunities for firm-to-firm interaction
= higher profit, tech adoption, management practices

@ ...but likely incomplete accounting at scale
> If that learned ability diffuses to others (Alverez, et al., 2008; Perla and Tonetti, 2014; Buera and Lucas, 2018)

© Big picture: increase managerial skill at scale

> Infer aggregate implications from same micro evidence (World Bank, 2020)
> Warranted? If not, how do we link the two?



What We Do

> GE model of intra-firm learning + diffusion
> Micro-foundation: Interaction = exchange “ideas” (skills, info, etc.)

> Link to aggregates with diffusion: Distribution of ideas = learning tomorrow, prices, ...

> Question: What is the cost of distortions that limit interactions?

> Problem: depends on hard-to-measure elasticities (who/how often do | meet?)

> Derive relationship between key model parameters and micro evidence

> Holds for broad class of recent experiments + diffusion models
> Links micro evidence with models that motivate it



What We Find

> Use to re-interpret smaller scale experiments that making learning easier

> Average treatment effect has no (direct) relation to at-scale gains

> Highlight alternative covariance moment

> Better summarizes key model forces
> Simple OLS interpretation (non-parametric extensions to more complicated settings)



What We Find

> Use to re-interpret smaller scale experiments that making learning easier
> Average treatment effect has no (direct) relation to at-scale gains

> Highlight alternative covariance moment

> Better summarizes key model forces
> Simple OLS interpretation (non-parametric extensions to more complicated settings)

> Quantify in specific Kenyan RCT (Brooks, et al., 2018)

> Treatment: random matches between high- and low-profit firm owners
> ATE = +19%

> Continuum of economist deliver same ATE, but aggregate gains € (0.6%,38%)
> ATE + Covariance = +11%



Outline

@ Lay out (part of) diffusion model
> Highlight importance of various parameters

@ Link parameters to promising micro evidence
> Highlight why standard empirical moments provide little help

© Quantify importance with RCT in Kenya



Economic Environment

> Discrete time, infinite horizon economy

> Measure one agents (“firms") with ability z
> Each period, get two shocks:

> Imitation shock 2, adopt if profitable
> Random innovation in ability €

> & uncorrelated with z, 2, not i.i.d.

Profit: m o z Ability: 2/ = e“+€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(ﬁ; z,0)
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Economic Environment

> Discrete time, infinite horizon economy

> Measure one agents (“firms") with ability z
> Each period, get two shocks:

> Imitation shock 2, adopt if profitable
> Random innovation in ability €

> & uncorrelated with z, 2, not i.i.d.
1. How does z evolve? Law of motion for ability z/ = etz max{1, (2/2)}#
2. What gets transmitted? In equilibrium, profit 7 « z

3. Who interacts? Equilibrium source distribution 2 ~ I\,;I(é; z,0), 6 orders via FOSD

Special cases: Jovanovic and Rob (1989), Alvarez, et al. (2008), Lucas (2009), Lucas and Moll (2014), Perla and Tonetti (2014), Buera and
Lucas (2018), Buera and Oberfield (2020)

Profit: m o z Ability: 2/ = et 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Measuring Cost of Distortions that Limit Interactions

> Question: how large are benefits from better matching at scale?
> i.e., a permanent increase in 0

> Many experiments do something like this in partial equilibrium ...

> buyer/supplier links (Atkin, et al., 2017)

groups meetings of firm managers (Cai and Szeidl, 2018)

1-1 meetings of high- and low-profit SMEs (Brooks et al., 2018)
1-1 meeting with “role model” owner (Lafortune, et al., 2018)
business plan competition interactions (Fafchamps and Quinn, 2018)

v v v Vv

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Measuring Cost of Distortions that Limit Interactions

> Question: how large are benefits from better matching at scale?
> i.e., a permanent increase in 0

> Many experiments do something like this in partial equilibrium ...

> buyer/supplier links (Atkin, et al., 2017)

groups meetings of firm managers (Cai and Szeidl, 2018)

1-1 meetings of high- and low-profit SMEs (Brooks et al., 2018)
1-1 meeting with “role model” owner (Lafortune, et al., 2018)
business plan competition interactions (Fafchamps and Quinn, 2018)

v v v Vv

> All of these are the same shock at this level of abstraction
> (Weakly) Better set of draws for treatment group.
> In model: Replace M with better, exogenous H7—

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Linking experiments with model parameters

[ [ 7P max{1,#/7}" dHr(#) dH(r)

ATEdata _ ]E[Trlli € T]

— A—I—Emodel _
E[x’|i € C]

[ [ 7P max{1,#/7}" dM(#,=,6) dH()
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Linking experiments with model parameters

argpdets _ EF]i € T] JJ 7 max{1.4/x}° dHr(#) dH(x)

— A—I—Emodel _
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[ [ 7P max{1,#/7}" dM(#,=,6) dH()
For any (B, p), there is a unique* 0 that solves ATE™°%! — ATEdata
(* if ATE%® is within some computable range, otherwise no solution)

> Observe small ATE?t2, How to rationalize in model?

#1 Direct effect: (B, p) are low No one learns from a good match
#2 Extensive margin: 0 is high Everyone already meets smart firms

> (B, p,0) combinations do not have same aggregate implications
> Need to pin down relative importance

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(ﬁ; z,0)



Measuring the direct effect (53, p)

(B, p) are identified by coefficients from the following regression run only on treated firms

log(w}) = &+ plog(m;) + Blog <max {1, %}) +e

1

> Interpretation: impact of a better match, controlling for initial profit
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Measuring the direct effect (53, p)

(B, p) are identified by coefficients from the following regression run only on treated firms

log(w}) = &+ plog(m;) + Blog <max {1, %}) +e

1

> Interpretation: impact of a better match, controlling for initial profit
> (83, p) are unbiased: random matching creates exploitable heterogeneity

> Why this moment matters: aggregates driven by mass in right tail

cov ( log(m!), Iog(ﬁ',-))
If & > 7 for everyone ...3 = 3
log(#1)

Profit: m o z Ability: 2/ = et 2P max{1, (2/2)}? Imitation draws: 2 ~ 7\?](2; z,0)



Outline

@ Lay out (part of) diffusion model
> Highlight importance of various parameters

@ Link parameters to promising micro evidence
> Highlight why standard empirical moments provide little help

© Quantify importance with RCT in Kenya



RCT: Dandora, Kenya, 2014-2015

(Brooks et al., 2018)

> Treatment: Random match to high profit business owner

>  2x as profitable, 10 years more experience

> To more productive member of the match:
> Help less profitable firm learn about business

> One meeting during November 2014
> No topics, meeting length, cost to not meeting

> To treatment firm: phone number of the match

> Track outcomes over 5 quarters

9
Log(Monthly Profit)

‘ ----- Entire Pop. = = = Study Pop.

Defined matches

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Time Series of Profit Average Treatment Effect
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Time Series of Profit Average Treatment Effect

Identify off first period

2 3 4
Quarters Since Treatment



Underlying Channels

> Key mechanism: primarily costs

> 33% more likely to switch suppliers
> 45% in inventory costs

> Massive supplier turnover: 2/3 of control firms switch suppliers

> Diffusion model seems reasonable, despite quick fade-out

1. Profit gains are surplus, not redistribution
2. Second RCT: after being in treatment, go mentor a control firm

> Original mentor profit strongly predicts treatment
> Inconsistent with span-of-control theory

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Model Overview

> Measure one of agents with heterogeneous ability z

> Aggregate state: M(z)
> Die at rate 4, replaced with new agents who draw initial ability zp ~ G(z)

> Occupational choice each period

> Worker: paid market clearing wage w
> Firm: earn profit m(z) = x*n" — pxx —wn  Utility flow: v =wlog(y) + (1 — w)log(1l —s)
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Model Overview

> Measure one of agents with heterogeneous ability z
> Aggregate state: M(z)

> Die at rate 4, replaced with new agents who draw initial ability zp ~ G(z)

> Occupational choice each period

> Worker: paid market clearing wage w
> Firm: earn profit m(z) = x*n" — pxx — wn  Utility flow:

> Firms required to find supplier by exerting effort s

> Continuum of suppliers with different marginal cost m: 7° =
> Suppliers source from some outside entity, remove profit
> Nash bargain over price px

[value functions]

Profit: m o z Ability: 2/ = et 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)

u=uwlog(y)+ (1 —w)log(l—s)

(px — m)x

P = argmaxg, ()" (n%)' Y



Diffusion in the Model

> Ability z + effort s helps agents find a good supplier

atn—1
m=exp(—s)z~ «

> Can be diffused across agents

> Learn from operating firms

[value functions]

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /l\;l(é; z,0)



Stationary Equilibrium

> Stationary equilibrium is:
> Value functions and decision rules
> Bargaining outcomes
> Distribution M* is consistent with the decision rules and evolves according to

ANM(Z')) = 6G(z //F(Iog — plog(z) — Blog(max{1,2/z}) — c)dM(z;

and A(M*(2')) = M*(z

> Model satisfies all the relevant assumptions to use previous results (details in paper)

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)

M)dM(z)



Estimating Diffusion Parameters

> Step 1: Use law of motion to estimate (3, p) within treated firms

log(m!) ¢ 4+ p log(m) + B log(max{l,#;/m;}) +ei

= 241 4 0.59log(m;) + 0.54log(max{1,#;/mi})
(2.24) (0.27)** (0.24)**

Profit: m o z Ability: 2/ = e“t€2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Estimating Diffusion Parameters

> Step 1: Use law of motion to estimate (3, p) within treated firms

log(m!) ¢ 4+ p log(m) + B log(max{l,#;/m;}) +ei

= 241 4 0.59log(m;) + 0.54log(max{1,#;/mi})
(2.24) (0.27)** (0.24)**

~ 1
> Step 2: Estimate extensive margin 0 from ATE, under assumption M(2, z,0) = Mf(2)T-2

e [ ElEEL [ [ 7P max {1,7/m}" iﬁr(ﬁ)dHT(w) e o
Elrel [ [ xemax{1,#/x}’ dM(#, 7, 0)dHc(r)

min
6

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Implied RCT Dynamics

Replicate RCT in the model

> Replicate empirical profit distribution,
matches

> Trace impulse response
> Hold fixed distribution M*(z)

Quarters Since Treatment



Aggregate Implications

> Aggregate experiment: permanently increase 6 by 25%

> Main channel: learning shifts ability dist (64% of total)
> Amplification: wage ' causes marginal firms to exit (36%)

0.02r
< Worker ' Operate firm —
Baseline
0.015
(1) (2)
Fixed Wage  Total
Income 1.07 1.11 o.01}f
Ability 1.08 1.12
Labor Supply 0.92 0.98
Wage 1.00 1.13 0.005 F
0 N N N N
-3 -2 -1 0 1 2

Log Ability
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> Aggregate experiment: permanently increase 6 by 25%

> Main channel: learning shifts ability dist (64% of total)
> Amplification: wage ' causes marginal firms to exit (36%)

0.02r
< Worker ' Operate firm —
Baseline
0.015 New 6,
() () / \ baseline
Fixed Wage  Total \
1 wage
Income 1.07 1.11 0.01} \
Ability 1.08 1.12 1 \
Labor Supply 0.92 0.98 1 \
Wage 1.00 1.13 0.005 } 1 \
1 \
! J ~
—
0 . . . . n
-3 -2 -1 0 1 2

Log Ability

o~
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Aggregate Implications

> Aggregate experiment: permanently increase 6 by 25%

> Main channel: learning shifts ability dist (64% of total)
> Amplification: wage ' causes marginal firms to exit (36%)
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Fixed Wage  Total
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Aggregate Implications

> Aggregate experiment: permanently increase 6 by 25%

> Main channel: learning shifts ability dist (64% of total)
> Amplification: wage ' causes marginal firms to exit (36%)

(1) (2
Fixed Wage  Total

Income 1.07 1.11
Ability 1.08 1.12
Labor Supply 0.92 0.98
Wage 1.00 1.13

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}?

0.021 .
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0.015 1
o, 1
.“‘ !
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0.01f . state
N
1
a1
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1"
obedod v S e,

-3 -2 -1 0 1 2 3
Log Ability

~
Imitation draws: 2 ~ M(2; z, 0)



Getting diffusion parameters right is critical for at-scale gains ...

> For each (3, p) re-estimate 6 to match same 1-period ATE
> At-scale gains vary between 0.6% and 38%

p 02 02 = 3

Implied 6 Aggregate Gains



.and for extracting policy recommendations

0.7
. . 0.6
> Replicate same exercise for every ATE =
Q
005+
> Perverse policy recommendations &
wn
> Easy to come up with negative '% 0.4r
relationship &}
e 031
<
> Implications: i 0.2
> Maximize covariance given ATE ::D
> Locally, covariance is better (035 e e
predictor
0 ‘ ‘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Average Treatment Effect
[More details on result] [ATE Dynamics] [add mis-measurement] [Cai and Szeidl (2018)]



Conclusion

> Relationship between reduced-form RCT results and at-scale gains from learning

> Many parameter combinations for the same treatment effect (intensive/extensive margins)
> New covariance moment can help disentangle

> Kenya implementation: cost of not doing so can be large

> At-scale gains vary (0.6%,38%) for same ATE
> Why: covariance closely connected to key aggregate channel

> Leaves open a number of issues:

> Increased competition may limit sharing skills
> Method assumes matching function



Appendix Slides

Different matching processes under 52(2,2,9)
Extensions of identification procedure

Value Functions

Quantitative investigation of parameter importance
Dynamics of the treatment effect

Quantitative evaluation of mis-measurement

Same procedure in Cai and Szeidl (2018)



Different Matching Processes

> Adding exogenous innovations/noise

> Effort and bargaining



Noise in Diffusion Process

> Ability z receives idea that has two components: 2 = v/%z,

> Random match z, from another agent
> Random exogenous innovation on that idea y

> Distribution of draws:

<
=S
o
2

Il

Prob(z < ¢c)
= Prob(zm < c'y’I/O

/M(cv‘l/e)dr(v)

[back to matching options] [back to appendix] [back to modell

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Effort Choice and Bargaining

> Ability z receives match z,,

> Exert effort x implies draw 2 = zz1 =%

> Match m gets benefit b(x)

0
> Nash bargain over effort, bargaining weight 6: MaXyeo,1] (anzlfx) b(x)1—?

> Realized draw 2 = max {27 zme1*1/9}

> Distribution of draws:

I\?l(c) = Prob(2 < ¢) = Prob(zme*™1/? < ¢)
= Prob(zm < ce'/?7 1)
_ M(Cel/efl)

[back to matching options] [back to appendix] [back to modell

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Extensions of ldentification Procedure

> Semi-parametric identification
> Relationship between observables and z
> Mis-measurement

> Additional characteristics



Semi-Parametric Identification

> Estimate (p, f) in
log(z') = c + plog(z) + f (E) +e
z
> Follows directly from assumptions + literature on non-linear error-in-variable regressions
> Yatchew (1997), Héardle et al. (2000)
1. Estimate p
> Order data #t1/m < #p/m2 ... < *n/7N

> Difference out the nonlinear f in limit as gap between i, i + 1 goes to zero

2. Now estimate f non-parametrically given remaining variation

[back to id extensions] [back to appendix] [back to id procedures]

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



General relationship between observables and z

There exists a known function g(x) = Cz for some potentially unknown constant C and observables x.
> Estimate production function using data from control group, g(y, n, k) = Cz

> Similar regression with a data transform

08(&(x)) = ¢ + plog(g(x)) + log (max {1, £ 8 R

> Key: not 7  z, but any set of observables and z

[back to id extensions] [back to appendix] [back to id procedures]

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Mis-measurement

> Will do so with more general law of motion

M
log(r') =Y _ Bigi(#) +¢
j=1

Assumption
We observe two outcomes that are mis-measured versions of the true value, T = (7*,#*),
—k sk k
T = 7 +vy, k=12
—k sk k
Ty = T +uvyy, k=12

We assume the following relationships between the measurement error and true values:

E[uf|n*k v8]1 =0, k=1,2

1/5 is independent from 7, l/;k, where — k #£ k

Prafite 7o otz exterShiding] 2’ ={refcic £8 mpypdid{2)/ 2)} foack bvitatigresansresi M(2:2,0)



Basic Idea

> Basic idea from Kotlarki’s lemma, in R!

¢ ]E[i7r1eit7r2]
G (t) = ex (/ M)
P\Jy Elet]

> Inverse Fourier transform gives distribution of true values f(7*)

> Our model is #* = (7*,#*) € R2. Schennach (2004):

Proposition

IfE[|7[] and E[|nX|] are finite, then there exists a closed form for any function E[u(7*, B)] whenever it
exists.

[back to id extensions] [back to appendix] [back to id procedures]

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Additional Characteristics

> Let 3 depend on own and match characteristics, x and X

> Law of motion:

log(w}) = c+ plog(m;) + B(x,X) log (max {1’ %})

i

B
e+ sty + 3 vl (mas 1,22}
ib

b=1

Bin the characteristics in some way: log(7},)

> Identifies (p, 81, ..., 3s) with A3 adjustment
M(2, b; z,0) = My(2; z,0)T s

[back to id extensions] [back to appendix] [back to id procedures]

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Individual’s Problem

Static problem for each occupation

uf(z, M) = max - w log(m) + (1 — w) log(1 —s) u"(z, M) = wlog(w)
s,x,n>
s.t. ™ =x%n" — pxx — wn
m = f(s,z)

pe = argmax,, [r]" [ (m)]'~

Profit: m o z Ability: 2/ = e“+€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Individual’s Problem

Static problem for each occupation

uf(z, M) = max - w log(m) + (1 — w) log(1 —s) u"(z, M) = wlog(w)
s,x,n>
s.t. ™ =x%n" — pxx — wn
m = f(s,z)

px = argmax,, - [m]" [ (m)]' "
+ diffusion
v(z,M) = max{uv(z, M), u"(z, M)} + (1 — 5) / / v(Z/(2,€; 2), M')M(d2, M)dF ()
s.t. Z/(2,6,2) = €72 max {17 é}ﬁ

[back] ~
Profit: m o z Ability: 2/ = e“+€ 2P max{1, (2/2)}? Imitation draws: 2 ~ M(2; z, 6)



The Importance of Heterogeneity

Profit: m o< z

Log fraction of higher ability population

-10

Ability: 2/ = e“t€ 2P max{1, (2/2)}?

Fraction with ability above

B =0.769

S (50% closer to max)
.

B =0.538

-4r 0= —0.417

z, log(1 — M(z2))

0 =0.2915
(50% closer to max)

Log fraction of higher ability population

Log ability
Increasing 3

(baseline) (baseline)
,6 F
—— Baseline 81 Baseline
= = New Matching Technology = = New Matching Technology
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The Importance of Heterogeneity

Difference in distributions
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The Dynamics of the ATE

0 1 2 3 4 5 0 1 2 3 4 5

Quarters Since Treatment Quarters Since Treatment
At Estimated Persistence p = 0.595 At High Persistence p = 0.99
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Quantitative Evaluation of Mis-Measurement

> We observe m = 77*, where 7 ~ N(0, 0+) is classical measurement error

> 7~ N(0,07), where o+ is known but the individual realizations are not
> Can extend to unknown o, with more machinery

> Need a little notation for simplicity
> X = log(x)
> fi(x) is pdf
> px(t) = flR e™f(x)dx as its characteristic function.

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Quantitative Evaluation of Mis-Measurement

> Estimate characteristic functions of the observed 7 and #

3a(t) = <’11 Z eirlog(m')) brn(hnt)  z(t) = <'17 Z eitlog(fq)) i (hst)
Jj=1 j=1

> This gives us true characteristic functions: ¢z (t) = ¢z (t)/dz(t)

> Then recover densities from inverse Fourier transform

1 N - 1 N ok
for (1) = 5- / bre(De Tt fe(3) = 5 / Bar(t)e ™ dt

Profit: m o z Ability: 2/ = e“+€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Quantitative Evaluation of Mis-Measurement

> Minimum distance estimator to estimate

> Choose I' = (c, p, 8) to solve
n

min > (/= G(mi, 7))’

i=1

where

G(w,fr;r)://g(w*,fr*)fw*‘w(w*\w,F)f;r*|;r(fr*|fr,r)d7r*dfr*

Profit: m o z Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ /I\;I(é; z,0)



Aggregate Gains

Profit: m o< z

Table: Equilibrium Moments

or =03 or =1
) @ €) @
Fixed Wage  At-Scale Fixed Wage  At-Scale
Income 1.08 1.12 1.20 1.38
Ability 1.08 1.14 1.20 1.42
Aggregate Labor Supply 0.92 0.99 0.89 1.00
Wage 1.00 1.14 1.00 1.39

Table notes: All are measured relative to the baseline equilibrium at the
give value of o,. Each column reports the new stationary equilibrium after
shocking the matching technology, where the first (columns 1 and 3) holds
the wage fixed at its baseline level and the second allows it to adjust.

o~

Ability: 2/ = e“t€ 2P max{1, (2/2)}? Imitation draws: 2 ~ M(2; z, 6)



Range of Aggregate Gains

Figure: Range of Aggregate Gains for each ATE
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Cai and Szeidl (2018): Basics

> RCT among 2,820 Chinese firms
> Treated firms (1,500 of 2,820) are randomly placed into a group of approximately 10 other firms

> Different economy than our Kenya example

> Group meetings, instead of individual

> More intense: monthly for one year

> Larger firms: average size is 35 workers

> Cross-randomize info about new financial products

> Survey waves:

> Pre-treatment
> 1 year later (end of treatment period)
> 2 years later (1 year post-treatment)

[back to appendix] [back to results]
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Cai and Szeidl (2018): Results Overview

> Large and persistent effects on sales, profit, employment, productivity, management practices
> Hold in both post-treatment waves

> Information about financial products flows within groups

> Group-level scale predicts treatment effect

> Firms in groups with larger average size see larger treatment effect
> “Internal consistency check” of results

[back to appendix] [back to results]
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Cai and Szeidl (2018): Model

> Representative household:

1—68)"u(C
(@ FTyz0 2 UE)

s.t. Ct+Kt+1 —(l—A)Kt: Wt—l-rth—l-I'It
Ko given

> Firm profit: z!=®~"n®k" — wn — rk
. 5\ P
> Productivity evolves z;11 = e“T¢tzf (1 + %)

[back to appendix] [back to results]
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Cai and Szeidl (2018): Diffusion

> Pr = 6, join random group of exogenous size N

> Potential gains from match depends on average productivity of group
N
z= g 2i/N
i=1

> Distribution of draws: =R
M(2)=1-0+60Q(2),

[back to appendix] [back to results]
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Cai and Szeidl (2018): Estimating Diffusion Parameters

> Focus on firm size, given available results
> Estimate off t = 0,1 data, check if we can match t =2

> First step within treatment group:
ﬁ.
log(n?) = c + plog(n;) + B log (1 + —') +e& for all i in treatment
ni
> Then estimate 0

Elny] [ 7 (1 +h/n) dHy(A)dH7(n)
Elncl [ [ ne (1 + #/n)? dM(h; 6)dHc(n)

min abs
0

[back to appendix] [back to results]
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Cai and Szeidl (2018): Persistence of ATE

Figure: Dynamics of Average Treatment Effect (Firm Size)
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Cai and Szeidl (2018): Range of At-Scale Gains

Figure: Range of Aggregate Gains for each ATE (Firm Size)
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