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Motivation

Goal: Study cost of distortions that limit intra-firm learning opportunities

1 Micro evidence suggest these frictions are important (Atkin, et al, 2017; Brooks et al, 2018; Cai and Szeidl, 2018)
. Randomly create new opportunities for firm-to-firm interaction
⇒ higher profit, tech adoption, management practices

2 . . . but likely incomplete accounting at scale
. If that learned ability diffuses to others (Alverez, et al., 2008; Perla and Tonetti, 2014; Buera and Lucas, 2018)

3 Big picture: increase managerial skill at scale
. Infer aggregate implications from same micro evidence (World Bank, 2020)
. Warranted? If not, how do we link the two?
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What We Do

. GE model of intra-firm learning + diffusion
. Micro-foundation: Interaction ⇒ exchange “ideas” (skills, info, etc.)
. Link to aggregates with diffusion: Distribution of ideas ⇒ learning tomorrow, prices, . . .

. Question: What is the cost of distortions that limit interactions?
. Problem: depends on hard-to-measure elasticities (who/how often do I meet?)

. Derive relationship between key model parameters and micro evidence
. Holds for broad class of recent experiments + diffusion models
. Links micro evidence with models that motivate it



4/22

What We Find

. Use to re-interpret smaller scale experiments that making learning easier
. Average treatment effect has no (direct) relation to at-scale gains

. Highlight alternative covariance moment
. Better summarizes key model forces
. Simple OLS interpretation (non-parametric extensions to more complicated settings)

. Quantify in specific Kenyan RCT (Brooks, et al., 2018)
. Treatment: random matches between high- and low-profit firm owners
. ATE = +19%

. Continuum of economist deliver same ATE, but aggregate gains ∈ (0.6%, 38%)
. ATE + Covariance ⇒ +11%
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Outline

1 Lay out (part of) diffusion model
. Highlight importance of various parameters

2 Link parameters to promising micro evidence
. Highlight why standard empirical moments provide little help

3 Quantify importance with RCT in Kenya
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Economic Environment

. Discrete time, infinite horizon economy
. Measure one agents (“firms”) with ability z
. Each period, get two shocks:

. Imitation shock ẑ, adopt if profitable

. Random innovation in ability ε
. ε uncorrelated with z, ẑ, not i.i.d.

1. How does z evolve? Law of motion for ability z ′ = ec+εzρ max{1, (ẑ/z)}β

2. What gets transmitted? In equilibrium, profit π ∝ z

3. Who interacts? Equilibrium source distribution ẑ ∼ M̂(ẑ; z, θ), θ orders via FOSD

Special cases: Jovanovic and Rob (1989), Alvarez, et al. (2008), Lucas (2009), Lucas and Moll (2014), Perla and Tonetti (2014), Buera and
Lucas (2018), Buera and Oberfield (2020)

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Measuring Cost of Distortions that Limit Interactions

. Question: how large are benefits from better matching at scale?
. i.e., a permanent increase in θ

. Many experiments do something like this in partial equilibrium . . .
. buyer/supplier links (Atkin, et al., 2017)
. groups meetings of firm managers (Cai and Szeidl, 2018)
. 1-1 meetings of high- and low-profit SMEs (Brooks et al., 2018)
. 1-1 meeting with “role model” owner (Lafortune, et al., 2018)
. business plan competition interactions (Fafchamps and Quinn, 2018)

. All of these are the same shock at this level of abstraction
. (Weakly) Better set of draws for treatment group.
. In model: Replace M̂ with better, exogenous ĤT

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Linking experiments with model parameters

ATEdata =
E[π′|i ∈ T]
E[π′|i ∈ C]

ATEmodel =

∫ ∫
πρ max {1, π̂/π}β dĤT (π̂) dH(π)∫ ∫

πρ max {1, π̂/π}β dM̂(π̂, π, θ) dH(π)

Proposition
For any (β, ρ), there is a unique* θ that solves ATEmodel = ATEdata

(* if ATEdata is within some computable range, otherwise no solution)

. Observe small ATEdata. How to rationalize in model?
#1 Direct effect: (β, ρ) are low No one learns from a good match
#2 Extensive margin: θ is high Everyone already meets smart firms

. (β, ρ, θ) combinations do not have same aggregate implications
. Need to pin down relative importance

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Measuring the direct effect (β, ρ)

Proposition
(β, ρ) are identified by coefficients from the following regression run only on treated firms

log(π′i ) = c̃ + ρ log(πi ) + β log
(

max
{
1,
π̂i
πi

})
+ εi

. Interpretation: impact of a better match, controlling for initial profit

. (β, ρ) are unbiased: random matching creates exploitable heterogeneity

. Why this moment matters: aggregates driven by mass in right tail

If π̂ > π for everyone . . . β̂ =
cov
(

log(π′i ), log(π̂i )
)

σ2log(π̂i )

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Outline

1 Lay out (part of) diffusion model
. Highlight importance of various parameters

2 Link parameters to promising micro evidence
. Highlight why standard empirical moments provide little help

3 Quantify importance with RCT in Kenya
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RCT: Dandora, Kenya, 2014-2015
(Brooks et al., 2018)

. Treatment: Random match to high profit business owner
. 2x as profitable, 10 years more experience

. To more productive member of the match:
. Help less profitable firm learn about business
. One meeting during November 2014
. No topics, meeting length, cost to not meeting

. To treatment firm: phone number of the match

. Track outcomes over 5 quarters

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Time Series of Profit Average Treatment Effect
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Underlying Channels

. Key mechanism: primarily costs
. 33% more likely to switch suppliers
. 45% in inventory costs

. Massive supplier turnover: 2/3 of control firms switch suppliers

. Diffusion model seems reasonable, despite quick fade-out
1. Profit gains are surplus, not redistribution
2. Second RCT: after being in treatment, go mentor a control firm

. Original mentor profit strongly predicts treatment

. Inconsistent with span-of-control theory

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Model Overview

. Measure one of agents with heterogeneous ability z
. Aggregate state: M(z)
. Die at rate δ, replaced with new agents who draw initial ability z0 ∼ G(z)

. Occupational choice each period
. Worker: paid market clearing wage w
. Firm: earn profit π(z) = xαnη − pxx − wn

. Firms required to find supplier by exerting effort s
. Continuum of suppliers with different marginal cost m: πs = (px −m)x
. Suppliers source from some outside entity, remove profit
. Nash bargain over price px

[value functions]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)

Utility flow: u = ω log(y) + (1− ω) log(1− s)
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Diffusion in the Model

. Ability z + effort s helps agents find a good supplier

m = exp(−s)z
α+η−1
α

. Can be diffused across agents

z ′ = ec+εzρ max
{
1,

ẑ
z

}β
. Learn from operating firms

ẑ ∼ M̂(ẑ; θ,M) = Mf (ẑ;M)
1

1−θ

[value functions]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Stationary Equilibrium

. Stationary equilibrium is:
. Value functions and decision rules
. Bargaining outcomes
. Distribution M∗ is consistent with the decision rules and evolves according to

Λ(M(z ′)) = δG(z ′) +
∫ ∫

F (log(z ′)− ρ log(z)− β log(max{1, ẑ/z})− c)dM̂(ẑ;M)dM(z)

and Λ(M∗(z ′)) = M∗(z)

. Model satisfies all the relevant assumptions to use previous results (details in paper)

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)



17/22

Estimating Diffusion Parameters

. Step 1: Use law of motion to estimate (β, ρ) within treated firms

log(π′i ) = c̃ + ρ log(πi ) + β log(max{1, π̂i/πi}) + εi

= 2.41 + 0.59 log(πi ) + 0.54 log(max{1, π̂i/πi})
(2.24) (0.27)∗∗ (0.24)∗∗

. Step 2: Estimate extensive margin θ from ATE, under assumption M̂(ẑ, z, θ) = Mf (ẑ)
1

1−θ

min
θ

abs

(
E[π′T ]
E[π′C ]

−

∫ ∫
πρ max {1, π̂/π}β dĤT (π̂)dHT (π)∫ ∫

πρ max {1, π̂/π}β dM̂(π̂, π, θ)dHC (π)

)
⇒ θ = −0.41

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Implied RCT Dynamics

Replicate RCT in the model
. Replicate empirical profit distribution,

matches
. Trace impulse response
. Hold fixed distribution M∗(z)
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0.4
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Data
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Aggregate Implications

. Aggregate experiment: permanently increase θ by 25%
. Main channel: learning shifts ability dist (64% of total)
. Amplification: wage ↗ causes marginal firms to exit (36%)

(1) (2)
Fixed Wage Total

Income 1.07 1.11
Ability 1.08 1.12
Labor Supply 0.92 0.98
Wage 1.00 1.13

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Getting diffusion parameters right is critical for at-scale gains . . .

. For each (β, ρ) re-estimate θ to match same 1-period ATE
. At-scale gains vary between 0.6% and 38%

Implied θ Aggregate Gains
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. . . and for extracting policy recommendations

. Replicate same exercise for every ATE

. Perverse policy recommendations
. Easy to come up with negative

relationship

. Implications:
. Maximize covariance given ATE
. Locally, covariance is better

predictor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[More details on result] [ATE Dynamics] [add mis-measurement] [Cai and Szeidl (2018)]
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Conclusion

. Relationship between reduced-form RCT results and at-scale gains from learning
. Many parameter combinations for the same treatment effect (intensive/extensive margins)
. New covariance moment can help disentangle

. Kenya implementation: cost of not doing so can be large
. At-scale gains vary (0.6%, 38%) for same ATE
. Why: covariance closely connected to key aggregate channel

. Leaves open a number of issues:
. Increased competition may limit sharing skills
. Method assumes matching function
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Appendix Slides
. Different matching processes under M̂(ẑ, z, θ)
. Extensions of identification procedure
. Value Functions
. Quantitative investigation of parameter importance
. Dynamics of the treatment effect
. Quantitative evaluation of mis-measurement
. Same procedure in Cai and Szeidl (2018)
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Different Matching Processes
. Adding exogenous innovations/noise
. Effort and bargaining
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Noise in Diffusion Process

. Ability z receives idea that has two components: ẑ = γ1/θzm
. Random match zm from another agent
. Random exogenous innovation on that idea γ

. Distribution of draws:

M̂(c) = Prob(ẑ ≤ c)
= Prob(zm ≤ cγ−1/θ

=
∫

M(cγ−1/θ)dΓ(γ)

[back to matching options] [back to appendix] [back to model]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Effort Choice and Bargaining

. Ability z receives match zm
. Exert effort x implies draw ẑ = zxmz1−x
. Match m gets benefit b(x)

. Nash bargain over effort, bargaining weight θ: maxx∈[0,1]
(
zxmz1−x

)θ b(x)1−θ

. Realized draw ẑ = max
{
z, zme1−1/θ

}
. Distribution of draws:

M̂(c) = Prob(ẑ ≤ c) = Prob(zme1−1/θ ≤ c)
= Prob(zm ≤ ce1/θ−1)
= M(ce1/θ−1)

[back to matching options] [back to appendix] [back to model]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Extensions of Identification Procedure
. Semi-parametric identification
. Relationship between observables and z
. Mis-measurement
. Additional characteristics



28/22

Semi-Parametric Identification

. Estimate (ρ, f ) in

log(z ′) = c + ρ log(z) + f
( ẑ
z

)
+ ε

. Follows directly from assumptions + literature on non-linear error-in-variable regressions
. Yatchew (1997), Härdle et al. (2000)

1. Estimate ρ
. Order data π̂1/π1 < π̂2/π2 . . . < π̂N/πN
. Difference out the nonlinear f in limit as gap between i , i + 1 goes to zero

2. Now estimate f non-parametrically given remaining variation
[back to id extensions] [back to appendix] [back to id procedures]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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General relationship between observables and z

.

There exists a known function g(x) = Cz for some potentially unknown constant C and observables x.

. Estimate production function using data from control group, g(y , n, k) = Cz

. Similar regression with a data transform

log(g(x′)) = c + ρ log(g(x)) + β log
(

max
{
1,

g(x̂)
g(x)

})
+ ε,

. Key: not π ∝ z, but any set of observables and z
[back to id extensions] [back to appendix] [back to id procedures]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Mis-measurement

. Will do so with more general law of motion

log(π′) =
M∑
j=1

βjgj (~π) + ε

Assumption
We observe two outcomes that are mis-measured versions of the true value, ~π∗ = (π∗, π̂∗),

~πk1i = ~π∗ki + νk1i , k = 1, 2
~πk2i = ~π∗ki + νk2i , k = 1, 2

We assume the following relationships between the measurement error and true values:

E[νk1 |π∗k , νk2 ] = 0, k = 1, 2

νk2 is independent from ~π∗, ν−k2 , where − k 6= k

[back to id extensions] [back to appendix] [back to id procedures]Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Basic Idea

. Basic idea from Kotlarki’s lemma, in R1

φπ∗ (t) = exp
(∫ t

0

E[iπ1eitπ2 ]
E[eitπ2 ]

)

. Inverse Fourier transform gives distribution of true values f (π∗)

. Our model is ~π∗ = (π∗, π̂∗) ∈ R2. Schennach (2004):

Proposition
If E[|~πk |] and E[|ηk1 |] are finite, then there exists a closed form for any function E[u(~π∗, β)] whenever it
exists.

[back to id extensions] [back to appendix] [back to id procedures]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Additional Characteristics

. Let β depend on own and match characteristics, x and x̂

. Law of motion:

log(π′i ) = c + ρ log(πi ) + β(x, x̂) log
(

max
{
1,
π̂i
πi

})
Bin the characteristics in some way: log(π′ib) = c + ρ log(πib) +

B∑
b=1

βb log
(

max
{
1,
π̂ib
πib

})

. Identifies (ρ, β1, . . . , βB) with A3 adjustment

M̂(ẑ, b; z, θ) = M̂b(ẑ; z, θ)Γb

[back to id extensions] [back to appendix] [back to id procedures]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Individual’s Problem

Static problem for each occupation

uf (z,M) = max
s,x,n≥0

ω log(π) + (1− ω) log(1− s) uw (z,M) = ω log(w)

s.t. π = xαnη − pxx − wn
m = f (s, z)
px = argmaxpx [π]ν [πs(m)]1−ν

v(z,M) = max{uf (z,M), uw (z,M)}+ (1− δ)
∫
ε

∫
ẑ
v(z ′(ẑ, ε; z),M′)M̂(dẑ,M)dF (ε)

s.t. z ′(ẑ, ε; z) = ec+εzρ max
{
1,

ẑ
z

}β
[back]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Individual’s Problem

Static problem for each occupation

uf (z,M) = max
s,x,n≥0

ω log(π) + (1− ω) log(1− s) uw (z,M) = ω log(w)

s.t. π = xαnη − pxx − wn
m = f (s, z)
px = argmaxpx [π]ν [πs(m)]1−ν

v(z,M) = max{uf (z,M), uw (z,M)}+ (1− δ)
∫
ε

∫
ẑ
v(z ′(ẑ, ε; z),M′)M̂(dẑ,M)dF (ε)

s.t. z ′(ẑ, ε; z) = ec+εzρ max
{
1,

ẑ
z

}β
[back]
Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)

yy + diffusion
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The Importance of Heterogeneity

Fraction with ability above z , log(1 − M(z))
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Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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The Importance of Heterogeneity

Difference in distributions
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[back]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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The Dynamics of the ATE

0 1 2 3 4 5

Quarters Since Treatment
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At High Persistence ρ = 0.99

[back to results]Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Quantitative Evaluation of Mis-Measurement

. We observe π = τπ∗, where τ ∼ N(0, στ ) is classical measurement error
. τ ∼ N(0, στ ), where στ is known but the individual realizations are not
. Can extend to unknown στ with more machinery

. Need a little notation for simplicity
. x̃ = log(x)
. fx (x) is pdf
. φx (t) =

∫
R eitx fx (x)dx as its characteristic function.

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Quantitative Evaluation of Mis-Measurement

. Estimate characteristic functions of the observed π and π̂

φ̂π̃(t) =

(
1
n

n∑
j=1

eit log(πj )

)
φk,π(hπt) φ̂ ˜̂π(t) =

(
1
n

n∑
j=1

eit log(π̂j )

)
φk,π̂(hπ̂t)

. This gives us true characteristic functions: φπ̃∗ (t) = φ̂π̃(t)/φτ̃ (t)

. Then recover densities from inverse Fourier transform

fπ∗ (π∗) =
1
2π

∫
φ̂π∗ (t)e−itπ

∗
dt fπ̂∗ (π̂∗) =

1
2π

∫
φ̂π̂∗ (t)e−itπ̂

∗
dt

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Quantitative Evaluation of Mis-Measurement

. Minimum distance estimator to estimate

. Choose Γ = (c, ρ, β) to solve

min
Γ

n∑
i=1

(
π′i − G(πi , π̂i ; Γ)

)2
where

G(π, π̂; Γ) =
∫ ∫

g(π∗, π̂∗)fπ∗|π(π∗|π, Γ)fπ̂∗|π̂(π̂∗|π̂, Γ)dπ∗dπ̂∗

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Aggregate Gains

Table: Equilibrium Moments

στ = 0.3 στ = 1
(1) (2) (3) (4)

Fixed Wage At-Scale Fixed Wage At-Scale
Income 1.08 1.12 1.20 1.38
Ability 1.08 1.14 1.20 1.42
Aggregate Labor Supply 0.92 0.99 0.89 1.00
Wage 1.00 1.14 1.00 1.39

Table notes: All are measured relative to the baseline equilibrium at the
give value of στ . Each column reports the new stationary equilibrium after
shocking the matching technology, where the first (columns 1 and 3) holds
the wage fixed at its baseline level and the second allows it to adjust.

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Range of Aggregate Gains

Figure: Range of Aggregate Gains for each ATE
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[back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Basics

. RCT among 2,820 Chinese firms
. Treated firms (1,500 of 2,820) are randomly placed into a group of approximately 10 other firms

. Different economy than our Kenya example
. Group meetings, instead of individual
. More intense: monthly for one year
. Larger firms: average size is 35 workers
. Cross-randomize info about new financial products

. Survey waves:
. Pre-treatment
. 1 year later (end of treatment period)
. 2 years later (1 year post-treatment)

[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Results Overview

. Large and persistent effects on sales, profit, employment, productivity, management practices
. Hold in both post-treatment waves

. Information about financial products flows within groups

. Group-level scale predicts treatment effect
. Firms in groups with larger average size see larger treatment effect
. “Internal consistency check” of results

[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Model

. Representative household:

max
{Ct ,Kt+1}≥0

∞∑
t=0

(1− δ)tu(Ct)

s.t. Ct + Kt+1 − (1− λ)Kt = wt + rtKt + Πt

K0 given

. Firm profit: z1−α−ηnαkη − wn − rk
. Productivity evolves zt+1 = ec+εt zρt

(
1 + ẑt

zt

)β
[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Diffusion

. Pr = θ, join random group of exogenous size N

. Potential gains from match depends on average productivity of group

ẑ =
N∑
i=1

ẑi/N

. Distribution of draws:
M̂(ẑ) = 1− θ + θQ(ẑ),

[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Estimating Diffusion Parameters

. Focus on firm size, given available results
. Estimate off t = 0, 1 data, check if we can match t = 2

. First step within treatment group:

log(n′i ) = c + ρ log(ni ) + β log
(
1 +

n̂i
ni

)
+ ε for all i in treatment

. Then estimate θ

min
θ

abs

(
E[n′T ]
E[n′C ]

−

∫ ∫
πρ (1 + n̂/n)β dĤT (n̂)dHT (n)∫ ∫
nρ (1 + n̂/n)β dM̂(n̂; θ)dHC (n)

)
[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Persistence of ATE

Figure: Dynamics of Average Treatment Effect (Firm Size)
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[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)
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Cai and Szeidl (2018): Range of At-Scale Gains

Figure: Range of Aggregate Gains for each ATE (Firm Size)
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[back to appendix] [back to results]

Profit: π ∝ z Ability: z′ = ec+εzρ max{1, (ẑ/z)}β Imitation draws: ẑ ∼ M̂(ẑ; z, θ)


